
www.manaraa.com

ADIPS Framework for Flexible Distributed Systems

Tetsuo Kinoshita1 and Kenji Sugawara2

1 Research Institute of Electrical Communication, Tohoku University,
2-1-1 Katahira Aoba-ku, Sendai 980-8577, Japan

kino@riec.tohoku.ac.jp
2 Dep. of Network Science, Chiba Institute of Technology,

2-17-1 Tsudanuma, Narashino 275-0016, Japan
suga@suga.cs.it-chiba.ac.jp

Abstract. A next generation distributed system is expected to be flexible
in the sense that the system is able to deal with various changes of both the
users’ requirements and the operational conditions of system’s environment.
The aim of our research is to establish a new design methodology of the
flexible distributed systems based on agent-based computing technology. To
do so, we propose an agent-based distributed information processing system
(ADIPS) as a design model of flexible distributed systems. Furthermore, we
have developed an agent-based computing framework called ADIPS Frame-
work which supports the design and implementation of flexible distributed
systems. In this paper, we discuss the architecture and functions of ADIPS
Framework together with the applications realized by using ADIPS frame-
work.

1 Introduction

The next generation distributed systems have to provide various services for the users
living in the networked information spaces realized on the large-scale distributed sys-
tems. In the real world, the distributed systems confront with various perturbations of
their functions which are caused by the changes of both the users' requirements and
operational conditions of the system’s environment. As a result, the quality of service
of such a distributed system is changed and degraded along with the perturbations of the
systems.

Recently, the studies aiming this problem have been started in the fields such as the
advanced information networks [2,7,9,10] and the distributed mullet-media application
systems [1,8,14,15]. In order to provide the user-oriented, intelligent and stable services for
users, a distributed system should have a mechanism to maintain the quality of service
against various changes observed in the system’s operational environment. With this
mechanism, a distributed system has a capability to deal with the fluctuating operation-
al environment, and we call such a distributed system a flexible distributed system.

www.manaraa.com

2 Tetsuo Kinoshita et al.

The essential functions of flexible distributed system are defined from a view point of
changes of both the users' requirements and the operational conditions of the systems'
environment. In order to design and implement a flexible distributed system with new
functions, we adopt the agent-based computing technology as one of the promising
technologies. Although many kinds of architecture and mechanisms of agent-based
systems have been proposed and implemented, the effective methodology and tools have
not been provided for designers and developers of agent-based systems. Hence, we have
proposed and implemented an agent-based computing framework for developing the
agent-based flexible distributed systems.

In section 2, we propose a notion of a flexible distributed system (FDS), and discuss
the essential functions of FDS. In section 3, an agent-based distributed information
processing system (ADIPS) is introduced as a design model of FDS. Then, the ADIPS
framework is proposed as a new framework to design and implementation of the agent-
based flexible distributed systems based on the ADIPS model. Next, in section 4, we
explain the several applications of FDS to show the ability of the ADIPS Framework.
Finally, we conclude our work and future problems in section 5.

2 Flexible Distributed System

2.1 Notion of Flexible Distributed System

A distributed system consists of various distributed computer systems and the informa-
tion networks which are called a platform of the distributed system. According to the
requests given by users, the services of the distributed system are realized by using
functions of the platform and provided for users. From the view point of the configura-
tion of the services of distributed systems, the following changes can be considered at
the run time of the system.

• variation of the required services: many kinds of services have to be realized in
accordance with various user's requests in which the quality of the required services (the
required QoS) are specified.

• change of the quality of service (QoS) of a platform: due to the growth of the
communication traffic or the computational load of the platform, the QoS provided for
users are degraded as the computational resources of the platform are decreased.

• change of the users' requirements: due to change of both the required services and
the provided QoS of the platform, the users' requirements can easily be shifted to
another one.

A notion of flexibility is expressed as a system's capability to deal with these
changes, i.e., the flexibility of a distributed system is that the system can modify its
structure and functions against various changes of the system’s operational environment
observed at the run time [8]. To do so, a distributed system has to have the following
functional characteristics.

• User-oriented: a FDS accepts a user’s request at any time and tries to realize the
services which maximally satisfy the request from a view points of the user.

www.manaraa.com

PRIMA-98 3

• Homeostatic: a FDS can modify its structure and functions temporally to maintain
the required QoS against various temporal changes observed at the run time in the
system’s operational environment.

• Evolutional: a FDS can change its structure and functions permanently to adapt the
permanent or drastic changes of both the users’ requirements and the system’s opera-
tional environment.

A distributed system in which the above three characteristics have been reflected har-
monically, is called a Flexible Distributed System (FDS).

2.2 Essential Functions of Flexible Distributed System

A distributed system, in general, consists of various functional components located
on a platform. According to the notion of FDS, the following three methods would be
required to make a distributed system flexible in the perturbed systems environment.

 (M1) Tuning: Each component of a distributed system has the operational parame-
ters to change its functional characteristics and behavior. To deal with a slight change of
the system environment of the distributed system, a suitable component is selected and
the operational parameters of the component are modified.

(M2) Replacement: When a function of a distributed system has to be altered to deal
with the changes in the system environment, a component which realizes the function
is identified and replaced with a new component.

(M3) Reorganization: To deal with a drastic change of the system environment, a
subsystem of a distributed system is redesigned and reorganized into a new subsystem
which fits the whole system to the altered environment.

In the design of a FDS, we assume that the FDS consists of a distributed system
(DS), a component repository (CR) which holds and manages the components to be
used in the DS, and the following five kinds of the functions.

(F1) Request Acquisition Function (RAF) receives and analyses the user's requests to
detect the changes of the user's requirements.

(F2) Platform Sensor Function (PSF) monitors the operational condition of a plat-
form and sends the reports to other functions.

(F3) Parameter Tuning Function (PTF) is a function based on the method M1. Re-
ceiving the reports on the changes from RAF and PSF, PTF makes a plan to find a
component of DS to be tuned, and modify the parameters of the selected component.

(F4) Component Replacement Function (CRF) is a function based on the method
M2. According to the reports from RAF and PSF, CRF makes a plan to exchange a
component of DS with a new component selected by CR.

(F5) DS Reconstruction Function (DRF) is a function to deal with a drastic change
of the system environment based on the method M3. As same as CRF, receiving the
reports from RAF and PSF, DRF determines a subsystem to be redesigned, and then
DRF makes a plan to build a new subsystem. According to the plan, DRF selects the
components from CR, combines them into a new subsystem, and reorganize the whole
system.

www.manaraa.com

4 Tetsuo Kinoshita et al.

To realize these functions, it is convenient to treat the functional components of the
distributed systems as high level modules which can be combined each other and
organized as the subsystems of the FDS. Hence, the functional components will be
transformed to the intelligent agents using knowledge of respective components. In
the next section, we propose an agent-based computing framework to support the design
and implementation of various agents of the FDS.

3 Agent-based Computing Framework for FDS

3.1 ADIPS Model

As explained in previous section, the functional components of a distributed system are
formalized and realized as the agents which work cooperatively to realize the users’
requirements based on knowledge of both the structure and functions (services) of
respective agents. However, it makes a design task of the distributed system difficult
that the system consists of many kinds of the functional components which the design-
ers have to realize by the new design of components or the reuse design of existing
components based on the users’ requirements. It is also difficult for the designers to
develop various agents and agents’ organization from scratch without effective design
tools. Hence, we propose a design model of an agent-based distributed information
processing system (ADIPS) and a design support environment called ADIPS Frame-
work [3,4,5].

The features of the ADIPS model can be summarized as follows;
(1) Agentification of components: the functional components of distributed systems

have been designed and implemented as the computational processes run on the plat-
forms of distributed systems. Acquiring knowledge regarding the design of a computa-
tional process called base process in this paper, the functions to manage and control the
base process as an agent are defined and combined with the base process. This kind of
agent is called primitive agent in the ADIPS model, and the operations to define the
primitive agent is called agentification of base process. The ADIPS agent architecture
provides an agentification mechanism for designers.

 (2) Requirements-driven design: according to the users’ requirements, the primi-
tive agents can be combined each other to make an organization of agents which
provides the requested services for users. In an organization of agents, there exists an
agent which is responsible to manage and control an organization and its members. This
kind of agent is called organizational agent in the ADIPS model. The hierarchical
construction of services can easily be designed by defining an organizational agent
which holds several organizational agents as its members. Hence, the design of distrib-
uted system is reformed into the design of the agents and the organization of agents
based on the users’ requirements.

(3) Reuse of assets: it may be useful to provide the existing sets of both organiza-
tional agents and primitive agents for designers in advance, because the designers can
select suitable agents which have the required services and functions, and also reuse

www.manaraa.com

PRIMA-98 5

these agents to construct the target distributed system. The reuse-based design is one of
effective methods to develop the distributed systems in an efficient and systematic way.
Using agentification operation, the existing useful base processes can be defined as the
primitive agents. The organizational agents can also be memorized as the design cases
of services/functions of distributed systems. Accumulating and reusing the assets based
on the ADIPS model, the reuse-based design of distributed can be promoted.

Under the ADIPS model, an ADIPS is designed as an organization of agents which
consists of both the primitive agents and the organizational agents. The organization of
agents can work as an intelligent software robot to provide the required services for
users. Moreover, an ADIPS can cooperate with the other ADIPSs and organize a group
of ADIPSs to deal with the complex tasks. Such an organization of ADIPSs can be
considered as a society of intelligent software robots.

3.2 ADIPS Agent Architecture

An ADIPS agent architecture depicted in Fig.1 is introduced to design and implement
the primitive agents and the organizational agents. An agentification mechanism
consists of three functional modules, i.e., 1) Cooperation Mechanism (CM), 2) Task
Processing Mechanism (TPM), and 3) Domain Knowledge base (DK).

CM

TPM DK

base process /
 organization of agents

AORP

ACCP

agentification mechanism

Fig. 1 . ADIPS Agent Architecture

The CM provides the communication functions not only to exchange information
between agents but also to construct /reconstruct the organization of agents. The CM
uses two kinds of communication protocols, i.e., ADIPS organization/reorganization
protocol (AORP) and ADIPS communication/cooperation protocol (ACCP). The
details of these protocol are explained in next section.

The TPM is responsible to execute and control a task assigned to an agent based on
the intra-agent communication among the CM and DK. A TPM of a primitive agent is

www.manaraa.com

6 Tetsuo Kinoshita et al.

responsible to manage the task execution done by its base process. In an organizational
agent , a TPM is responsible to manage and control the execution of subtasks assigned
to the members of its organization.

The DK holds knowledge and knowledge processing mechanisms to control total
behavior of an agent. As shown in Fig.2, a message analyzer receives and classifies the
message of both CM and TPM, and selects a suitable message processor to deal with
this message. A message processor is a knowledge processing mechanism which has
knowledge to process a task specified by the received messages.

CMTPM

Message
Analyzer

Agent Script
 (Knowledge)

DK

Message
Processor

Fig. 2 . Structure of DK of ADIPS agent

To realize the essential functions of flexible distributed systems, various knowledge
such as the functional specifications of base processes, the heuristic to control the base
processes and the organization of agents, the strategies to cooperate with other agents
and so on, have to be acquired and represented as the agent scripts by using ADIPS/L
scripting language. Moreover, many kinds of knowledge processing mechanisms can
be defined and utilized as the message processors to make an agent more intelligent.
Depend upon the capabilities of the DK, the designers can develop various agents from
deliberative type to reactive type.

3.3 ADIPS Framework

The ADIPS Framework is an agent-based computing environment to implement and
execute the ADIPSs based on various users’ requirements. The ADIPS framework
consists of three subsystems, as shown in Fig.3, i.e., 1) ADIPS Workspace (AWS)
which is an agents’ operational environment, 2) ADIPS Repository (ARS) which is a
storage with the functions to manage and utilize the reusable agents, and 3) ADIPS
Design Support (ASP) which provides the facilities for designers to develop various
agents based on ADIPS model.

www.manaraa.com

PRIMA-98 7

ADIPS

DIPS

User
services

requests

instance agent

base process

class agent

Designer

Agent
Programming

 ADIPS
Repository
 (ARS)

user's platform designer's platform

ADIPS

AWS

ADIPS Workspace
 (AWS)

networked environment

instantiation

requirements

ADIPS

User

ADIPS
Design
Support
 (ASP)

user's platform

Fig. 3. ADIPS Framework

From a view point of implementation of the ADIPS Framework, the agents are
classified to two types of agents, i.e., class agent and instance agent. An agent stored in
the ARS is called a class agent which is designed as a primitive/organizational agent and
managed as a reusable component of ADIPS in the functional class hierarchies. On the
other hand, an agent run on the AWS is called an instance agent which is generated as an
instance of a class agent in the ARS to realize an executable component of ADIPS.

An AWS is allocated as an agents’ operational environment on a distributed plat-
form. According to the structure and functions of an ADIPS to be designed, a lot of
AWSs can be installed on many platforms.

According to the users’ requirements, the instance agents of an ADIPS are created
from the class agents in the ARS by using the ADIPS organization/reorganization
protocol (AORP). For instance, a user can send a message for requiring a new service to
an instance agent such as secretary agent. Then, the secretary agent sends a message for
generating the requested service to an ARS run on the other distributed platform.
Responding to the message, the ARS creates the suitable instance agents on the desig-
nated AWS. Activating the instance agents, the requested service is provided for the
user. Due to the requests of the instance agents or the users, the AWS can also remove
the useless instance agents using the AORP.

The instance agents run on the AWSs can communicate with each other by using the
ADIPS communication/cooperation protocol (ACCP) which has a set of the cus-
tomized performatives of the agent communication protocol of KQML.

www.manaraa.com

8 Tetsuo Kinoshita et al.

The ARS and the AWS work together cooperatively based on the AORP. As ex-
plained above, the AWS sends a message of requesting a service to the ARS. In the
ARS, the received message is sent to the class agents to construct an organization of
agents which can provide the requested service. Although this process is basically the
same of a task-announcement-bidding process of the contract net protocol, the AORP is
defined as a unique inter-agent communication protocol for construction/reconstruction
of ADIPS’s agents. For instance, it is different from the original contract net protocol
to await the awarding until the all members of organization have been fixed. In the
ADIPS Framework, the construction of an organization of agents is regarded as a design
task of the required service of the ADIPS, and the ARS is responsible not only to
determine a total organization of agents which can provide the required service for
users, but also to generate the instance agents of the designed organization in the AWS.
Moreover, it is required to reconfigure the ADIPSs to maintain the required services
against various changes of both the users’ requirements and the system environment, as
explained in section 2. In such a case, the ARS and the AWS work cooperatively to
reconstruct the organization of instance agents based on the AORP. For example, when
an organizational agent in the AWS detects the irregular situations and issues a message
to replace some of members of its organization, this message is sent to the ARS. In the
ARS, several class agents are selected and instantiated again to reconstruct the corre-
sponding organization of agents based on the AORP.

AORP performatives

 task-announcement inform a task to be done
 bid response to task-announcement
 award allocate a task
 directed-award allocate a task directly
 report send result to a manager agent
 initialize setup instance agents
 release remove useless instance agents
 dissolution report remove-operation

ACCP performatives

 ask send a question
 tell send an answer to a question
 request-information require information
 information response to request-information
 request send a request
 acceptance accept a request
 refusal refuse a request
 direction require an action of agent

Fig. 4 . Example of Performatives used in AORP and ACCP

www.manaraa.com

PRIMA-98 9

As explained above, the AORP takes the most important role to realize the essential
functions of flexible distributed systems such as the component replacement function
and the DS reconstruction function explained in section 2. An example of performatives
of the AORP and the ACCP is shown in Fig.4.

The ASP is responsible to help various activities of ADIPS designers. At present,
the ASP provides the design support facilities to specify the class agents in the ARS
and monitor the behavior of instance agents in the AWS. To support the design of class
agents, an ARS-browser supports the designers to retrieve, inspect and modify the agent
scripts based on ADIPS/L. Since it is difficult to specify knowledge of an new class
agent, the standard description formats of agent scripts called knowledge templates, are
defined and provided for designers. On the other hand, to support the on-line debugging
of behavior and knowledge of agents, an ADIPS-agent-monitor is designed and imple-
mented to visualize the real time behavior of both the class agents in the ARS and the
instance agents in the AWS.

For several years, the prototypes of the ADIPS Framework have been designed and
implemented by using different kinds of programming languages. The first generation
prototypes was designed in Smalltalk environment, and the second generation proto-
types was implemented by using C++ and Tcl/Tk programming languages. The third
generation prototype is now implemented in Java environment. The AWS, ARS and
ASP are realized on the distributed platforms such as UNIX workstations and Win-
dows-based personal computers with the TCP/IP-based network environment.

4 FDS Application Experience

Several applications of flexible distributed systems have been designed and implemented
using the ADIPS Framework. In this section, we explain the following three applica-
tions briefly to show the capability of the ADIPS Framework.

4.1 Flexible Videoconference System

According to the growth and spread of networked environment, various distributed real-
time multimedia applications such as videoconference system have been developed and
utilized, e.g., CU-SeeMe, VdeoPhone, NetVideo, INRIA Videoconference system.
However, it is difficult for naive users to utilize such a videoconference system, because
(i) users cannot express their request correctly in detail to get the services, (ii) users
cannot select or combine the suitable communication services which require the com-
plex operations for users, (iii) users feel a lot of inconvenience to coordinate and
accomplish their ongoing tasks when the quality of the required service is degraded due
to the changes of operational conditions of videoconference systems. To solve these
problems, a flexible videoconference system (FVCS) [11,12] is proposed and implemented
based on the ADIPS Framework.

An agent-based architecture of a FVCS is depicted in Fig.5. The FVCS consists of
FVCS modules realized as the organization of agents which work in the respective
ADIPS workspaces on the distributed platforms. Each FVCS module is designed as an

www.manaraa.com

10 Tetsuo Kinoshita et al.

organization of FVCS agents such as service agent, sensor agent and user agent, as
shown in Fig.5. There exists two kinds of the service agents, i.e., service primitive
agent and service manager agent.

Cooperation (ACCP)Reconstruction (AORP)Construction (AORP)

video ag.

Manager Ag.-B

audio ag.

wb. ag.user A

User-B

video ag.

User-A

Manager Ag.-A

ARS

Platforms / Networked environment

Sensor Agents

se
rv

ic
es

user B

Service
Agents

audio ag.

wb. ag.

Service
Agents

se
rv

ic
es

requestsrequests

resources / operational conditons to be monitored

AWS-BAWS-A

Fig. 5 . An architecture of FVCS

A service primitive agent is defined as a primitive agent of ADIPS which has
knowledge to monitor and control a base process of multimedia communication. We
can utilize the existing software modules as the base processes, for instance, the vic, the
nv�@and the Vtalk for real-time video services, the Vat for audio service, and the wb for
shared text-editing service. A service primitive agent can tune the parameters of a base
process to maintain the required QoS under the observed conditions.

A service manager agent is defined as an organizational agents of ADIPS which has
knowledge to create and manage the organization of service primitive agents. For
instance, a videoconferencing Manager-agent-A in Fig.5, holds knowledge of the real-
time communication services and selects a vic-service-agent as a video communication
service agent which can provide the most suitable service for users under the operational
situations at that time. A service manager agent can make the contracts with a user
agent, the sensor agents and the other service manager agents to exchange information
on the changes of both the users’ requirements and the system’s operational situations.

A user agent communicates with its user, accepts the user’s requests, and transforms
the requests into the descriptions of users’ requirements. Furthermore, several kinds of

www.manaraa.com

PRIMA-98 11

sensor agents are defined as the primitive agents to monitor the static/dynamic opera-
tional conditions of the system and detect the changes occurred in the system environ-
ment. For instance, a CPU-sensor agent uses a sar-command of UNIX to monitor the
current CPU-utilization-rate and a Net-sensor agent also monitors the current status of
available bandwidth of communication between platforms by using netperf-command.

We have developed a prototype of FVCS using the ADIPS Framework/C++ version
and confirmed that the following functions can be realized.

a) Automatic composition of services: according to the users’ requirements which
specify the service functions together with the required QoS. Using the AORP of
ADIPS Framework, the organization of instance agents of FVCS are generated on the
AWS and a session of videoconference with the suitable QoS parameters are started by
the autonomous operations of FVCS agents.

b) Autonomous control of the required QoS : due to the changes of the system envi-
ronment, the operational conditions of the FVCS have been changed and the required
QoS is also fluctuated. Moreover, the users can issue the new requests on QoS to the
FVCS freely during the videoconferencing session. The FVCS have to deal with the
requests dynamically. Hence, the FVCS can tune the operational parameters of service
agents and maintain the required QoS of the videoconferencing session by the coopera-
tive behavior of FVCS agents based on the ACCP.

c) Autonomous reconfiguration of services: when some kinds of changes which can-
not be handled with the tuning the operational parameters of service agents, the manager
agents decide to change the organization of FVCS agents. Using the AORP and ACCP,
the manager agents negotiate with each other to replace some of members of organiza-
tion or to reconfigure the current organization of FVCS agents. Instantiating the new
FVCS agents by using the ARS, the videoconferencing session can be continued by the
renewed FVCS.

As explained above, the FDS for the real-time (synchronous) distributed applications
can be designed and implemented in a systematic way based on the ADIPS Framework.

4.2 Flexible Asynchronous Messaging System

An asynchronous messaging system such as electric mail systems, is appreciated as one
of useful tools to communicate and exchange information among people reside in
distant places. Although many kinds of tools have been developed and utilized by many
people, they get confused by the functional difference or heterogeneity of the communi-
cation tools which run on different distributed platforms.

For instance, due to a lack of message cancellation functions of recipients’ messag-
ing tools, a sender cannot remove or update the wrong messages before the recipients
open their mail boxes. Such an inconvenience of users may be one of intrinsic
properties of asynchronous messaging systems, however, it is essential to enhance the
capabilities of the messaging tools and reduce the burden of users for handling messages
within heterogeneous environment. Hence, a Flexible Asynchronous Messaging
System (FAMES) [6] is proposed based on the ADIPS Framework.

www.manaraa.com

12 Tetsuo Kinoshita et al.

A key concept of the FAMES is the abstraction by agentification of conventional
mail hosts in order to realize the adaptive customization of messaging services accord-
ing to the types of messages. As same as the FVCS, the FAMES consists of the
FAMES agents, i.e., mailing task agent and manager agent, as shown in Fig.6.

A Message Manager Agent (MMA) is a top-level organization agent in a personal
messaging environment (PE). A Secretary Agent (SA) mediates a human user and the
MMA to specify the requests using the user’s personal information. According to the
requests of both the user and the other MMA of another PE, the MMA manages and
controls the behavior of organization of the mailing task agents which are managed by a
Flow Control Manager Agent (FCMA), a Message Transfer Manager Agent (MTMA)
and a User Interface Manager Agent (UIMA), respectively.

A FCMA organizes and manages a set of Flow Control Agents (FCAs) and a FCA
executes a message flow control task such as circulation, cancellation, prioritized
message delivery and so on. The FCMA is responsible to create and control of instances
of FCAs based on the cooperation with the ARS.

A MTMA manages the Message Transfer Agents (MTAs) in the PE. A MTA is an
instance agent which performs a message delivery task together with another MTA of
the other PE. The FCA provides a receiver’s address for the MTA. The spooling of
received messages is also done by the MTA.

A UIMA manages the instance agents of both the Mail Client Agent (MCA) and the
User Interface Agent (UIA) in the PE. A MCA is an agent realized by the agentification
of existing e-mail client software. The MCA holds knowledge of the user’s e-mail client
to decide whether the required messaging service can deal with the e-mail client or not.
When a new messaging service is required, the MMA creates a new instance of suitable
FCA together with a new UIA which provides a user interface of the created FCA.

ARS

MMA

MMA
MTA

FCA-2
PEPE

MMA

PE

FCA-1

FCA-2

FCMA
MTMA

MTA

UIMA

SA

MCA

UIA

Request
UI

Mail
Crient

Service
oriented
UI

AWS1 AWS2

AWSUser

Fig. 6 . An architecture of FAMES

www.manaraa.com

PRIMA-98 13

A prototype of the FCMA is implemented by using the ADIPS Framework/Java
version. In the prototype, the mail hosts such as EudraPro, InternatMail, and Out-
lookExpress, have been agentified and utilized as members of organization of FAMES
agents of the users’ personal messaging environment (PE), and the following functions
can be provided for users.

a) User-adaptive service customization: the users of FAMES can give their requests
to utilize a messaging service which cannot be supported by the mail hosts at that time.
The required service is realized as the organization of FAMES agents and installed in the
users’ personal messaging environment. Then, the users can utilize the new service
together with the messaging services of the mail hosts which the users get familiar.

b) Requirements-driven service configuration: a mail host of a user have to prepare a
new messaging function to deal with the requests of the other users. Facing such an
unexpected request of the users, the manager agents of respective personal messaging
environment try to negotiate with each other to establish a cooperative group to process
the required messaging tasks such as circulation and cancellation.

Under the ADIPS Framework, various functions for realizing the intelligent messag-
ing services can easily be defined and added as the messaging service agents to enhance
the capabilities of the FAMES.

4.3 CyberOffice

Recently, an information space over the global networked environment provides a new
work place for people so called cyberspace based on the web-technology. To make
such a new work place useful and fruitful, various functions to augment and enhance the
digital reality of the work place have to be provided for people. A CyberOffice [13] is
proposed as such a new work place based on the ADIPS Framework.

The CyberOffice consists of a CyberOffice-unit in a Symbiotic Space (SS) and a
Symbiotic Space Base (SSB) built on a distributed environment, as shown in Fig.7. A
cyber office unit is defined based on both knowledge and the models of work/tasks done
by people in the real world, and a SS provides a virtual information space with the
social reality which is one part of the digital reality of the work place. On the other
hand, a SSB is realized by the AWSs in which various agents execute the tasks in the
CyberOffice-unit. The people in the real world and the agents in the AWSs can collabo-
rate and cooperate with each other as the members of the CyberOffice-unit in the SS.

 Since a virtual information space cannot be seen by people in the real world, the
cyber office unit has an office room view presented using the VRML in order to enhance
the perceptual reality which is another part of the digital reality to make people easy to
access and collaborate with the members reside in the SS. Therefore, in the CyberOffice,
people can recognize the other people and the agents as the human-like avatars which
move around the office rooms.

A prototype of the CyberOffice is developed using the ADIPS Framework/Java ver-
sion which is a recent version of our framework. According to a service request of a
member in a CyberOffice-unit, the organization of agents are generated in the SSB
using the AORP and the ACCP of ADIPS Framework, and then, the required service is

www.manaraa.com

14 Tetsuo Kinoshita et al.

provided for the member. For instance, a human member can ask a secretary agent to get
information from a library. The secretary agent sends an information-retrieval request to
a manager agent of the library to retrieve the required information. The manager agent
sends the request to suitable librarian agents or creates a new organization of librarian
agents based on the ARS to deal with the request. Then, the librarian agent sends the
retrieved information to the secretary agent and the human member.

Symbiotic Space Interface
 VRML Browser+Java

User-A

User-B

avatar of
User-A

avatar of
User-B

avatar of manager
Ag. of Library

avatar of
Secretary Ag.
of User-A

Real
World

Secretary Ag.
of User-A

Secretary Ag.
of User-B

Access
managenemt
Ag.

Information
management
Ag.

Symbiotic Space Base
(ADIPS Workspace)

avatar of
Secretary Ag.
of User-B

CyberOffice-Unit

in Symbiotic Space

dialog

Office view
of User-B

Office view
of User-A

manager Ag.
of Library

dialog

IF IF

.

.

.

Fig. 7 . An architecture of CyberOffice

As explained above, the ADIPS Framework can be utilized to design and implement
a new information space over the networked environment, i.e. the CyberOffice with the
digital reality in which people and agents can communicate and collaborate with each
other to accomplish various work/tasks in the real world.

5 Conclusion

In order to realize the next generation distributed systems, we introduce a notion of
flexibility of distributed system and propose a design model of flexible distributed
systems called agent-based distributed information processing system (ADIPS) and its
design support environment called ADIPS Framework, in this paper. Various agents
can be designed and implemented using knowledge embedded in respective agents
together with the agentification mechanisms and the agent execution mechanisms of the
ADIPS Framework. Furthermore, several examples of applications based on the ADIPS

www.manaraa.com

PRIMA-98 15

Framework are explained to demonstrate the capabilities of the ADIPS Framework. At
present, many problems remain as our future work, e.g., a ease-of-use knowledge
representation and manipulation mechanisms for intelligent agent, the design support
functions, an effective design method of agent-based system, and so on. However, we
confirm that the ADIPS Framework is useful to make a conventional distributed system
flexible in order to deal with the changes of both the users’ requirements and the system
environment through the experiment of prototypical applications.

References

1. Campbell, A., Coulson, G. and Hutchison, D., "A Quality of Service Architecture," ACM
SIGCOM, Computer Communication Review 24(2), pp.6-27, 1994.

2. Feldhoffer, M., "Model for Flexible Configuration of Application-oriented Communica-
tion Services," Comp. Commun, 18(2), pp.69-78, 1995.

3. Fujita, S., Sugawara, K., Kinoshita, T. and Shiratori, N., "Agent-based Architecture of
Distributed Information Processing Systems", Trans. IPSJ 37(5), pp. pp.840-852, 1996

4. Fujita S., Sugawara K., Kinoshita T., Shiratori N., "An Approach to Developing Human-
Agent Symbiotic Space", Proc. Second Joint Conf. on Knowledge-based Software Engi-
neering, pp.11-18, JSAI&RAS, 1996.

5. Kinoshita, T., Sugawara, K., Shiratori, N., "Agent-based Framework for Developing
Distributed Systems," Proc. CIKM'95 Workshop on Intelligent Information Agent,
ACM-SIGART, 1995.

6. Kitagata G., Sekiba J., Suganuma T., Kinoshita T., Shiratori N., "Proposal and Design of
Asynchronous Communication using Agents", Tech. Rep. IEICE IN98-32, pp.63-70,
1998.

7. Magedanz T., et al, Intelligent Agents: An Emerging Technology for Next Generation
Telecommunications?, Proc. INFOCOM'96, 1996.

8. Nahrstedt, K. and Smith, J.M., "The QoS Broker," IEEE Multimedia, 2(1), pp.53-67,
1995.

9. Shiratori, N., Sugawara, K., Kinoshita, T., Chakraborty, G., "Flexible Networks: Basic
concepts and Architecture," IEICE Trans. Comm. E77-B(11), pp.1287-1294, 1994.

10. Sugawara, K., Suganuma, T., Chakraborty, G., Moser, M., Kinoshita, T. and Shiratori,
N., "Agent-oriented Architecture for Flexible Networks," Proc. the Second International
Symposium on Autonomous Decentralized Systems, pp.135-141, 1995.

11. Suganuma T., Fujita S., Sugawara K., Kinoshita T., Shiratori N., "Flexible Videoconfer-
ence System based on Muliagent-based Architecture", Trans. IPSJ 38(6), pp.1214-1224,
1997.

12. Suganuma T., Kinoshita T., Sugawara K., Shiratori N., "Flexible Videoconference
System based on ADIPS Framework", Proc. Third Int. Conf. on Practical Application of
Intelligent Agent and Multi-agent Technology (PAAM98), pp. 83-98, 1998.

13. Saga T., Sugawara K., Kinoshita T., Shiratori N., "An Approach to Developing
CyberOffices based on Multiagent System", Tech. Rep. IEICE AI96-11, pp.23-30,
1996.

14. Turletti, T. and Huitema, C., "Videoconferencing on the Internet," IEEE/ACM Trans. on
Networking 4(3), pp.340-351, 1996

15. Vogel, A., Kerherve, B., Bochmann, G. and Gecsei, J., "Distributed Multimedia and QoS:
A Survey," IEEE Multimedia 2(2), pp.10-19, 1995.

